
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 

 

La Garde Ultime: Analysis of NP-Hard Cryptography 
 

Ellijah Darrellshane Suryanegara - 13522097 

Program Studi Teknik Informatika  

Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia  

13522097@std.stei.itb.ac.id 
 

 

 

Abstract—This paper explores the strategic application of NP-

Hard cryptography as a robust method for enhancing the security of 

cryptosystems, capitalizing on the inherent intractability associated 

with problems characterized by a P-hardness complexity within the 

realm of NP-hard. A comprehensive analysis of two noteworthy NP-

Hard cryptosystems, namely Merkle—Hellman and Naccache—

Stern, brings to light vulnerabilities susceptible to specific algorithms. 

These vulnerabilities, with the potential to navigate around the 

intrinsic intractability of the problems and the looming prospect of 

quantum computers, prompt a reassessment of the reliance on NP-

hardness alone. The findings underscore the importance of 

exercising prudence and considering alternative cryptographic 

paradigms in the quest for constructing an impervious cryptosystem. 

 

Keywords—cryptography, P vs NP, NP-hardness 

 

 

I.   INTRODUCTION 

Cryptography is all about securing and delivering data in such 

a way that only specific individuals can understand or access it. 

We want it to be simple so that people who are granted access 

can acquire the transmitted data with ease while simultaneously 

being very complex to prevent unsanctioned actors from 

attaining equivalent access. Achieving security in this degree 

however is getting harder and harder—even seemingly 

impossible—as computational capabilities of modern computers 

are advancing with remarkable speed and efficiency. Problems 

that are deemed impossible, to the point of taking an early 

generation computer 10.000 years to solve, would now presently 

pose an inconsequential challenge to the likes of a quantum 

computer which would effectively resolve the identical issue 

within a mere second. Hence, it is only natural to wonder 

whether if designing the perfect cryptosystem—la garde ultime 

(“the ultimate guard” in French)—akin to chasing the end of a 

rainbow?  

Well, a straightforward solution would be to adopt an 

algorithm whose efficient solution eludes contemporary 

computational capabilities as the bedrock of our cipher. In 

computational complexity theory, the problem in hand has much 

similarity as the P versus NP problem. The P versus NP problem 

is basically about asking, “If the solution to a problem can be 

verified (NP) in polynomial time, can it be found (P) in 

polynomial time?”. In the context of cryptography, we want to 

find out if a key to our cryptosystem which inherently demands 

verifiability in a reasonable amount of time—lest the purpose of 

the cipher, ensuring accessible data, be nullified—can also 

feasibly, meaning in a reasonable amount of time as well, be 

deciphered illegitimately. As we aspire to craft an ideal cypher, 

one that ensures verifiability while remaining virtually 

impervious to decryption in the absence of the designated key, 

an implication is made that we are operating in the assumption 

that P ≠ NP. With this assumption in place, we can now enter 

the realm of NP-hard problems and ask, “Is NP-Hard 

Cryptography the answer for our journey in finding la garde 

ultime?” 

 

II.  THEORETICAL BASIS 

A. Intractability 

     The first difficulty in developing a theory of average-

case intractability is to come up with a formal definition 

of what it means for a problem to be “intractable on 

average” or, equivalently, what it means to be “average-

case tractable.” A natural definition would be to consider 

an algorithm efficient-on-average if it runs in expected 

polynomial time. Such a definition has various 

shortcomings (related to the fact that it is too restrictive). 

For example, if an algorithm A runs in time t(x) on input 

x, and its simulation B (on a different model of 

computation) runs in time t2(x) on input x, it is natural that 

we would like our definition to be such that A is efficient-

on-average if and only if B is.  

     Suppose, however, that our inputs come from the 

uniform distribution, and that A runs in time n2 on all 

inputs of length n, except on one input on which A takes 

time 2n. Then the expected running time of A is 

polynomial but the expected running time of B is 

exponential. Looking at the median running time of an 

algorithm gives us a more robust measure of complexity, 

but still a very unsatisfactory one: if an algorithm runs in 

polynomial time on 70% of the inputs, and in exponential 

time on 30% of the inputs, it seems absurd to consider it 

an efficient-on-average algorithm. The right way to 

capture the notion of “efficient on typical instances” 

should be that it is fine for an algorithm to take a large 

amount of time on certain inputs, provided that such 

inputs do not occur with high probability: that is, inputs 

requiring larger and larger running times should have 

proportionally smaller and smaller probability. This is the 

idea of Levin’s definition of average-case complexity.  

 

Levin’s definition 

an algorithm is polynomial-time-on-average if there is a 

constant c > 0 such that the probability, over inputs of 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 

 

length n, that the algorithm takes more than time T is at 

most poly(n)/Tc. 

 

 

B. P = NP? 

     In the 1995 episode of The Simpsons, Treehouse of 

Horror VI (Season 7 Episode 6), Homer Simpson 

stumbles upon a portal to the enigmatic Third Dimension 

while attempting to evade his in-laws. Amid a dark 

expanse marked by green gridlines and adorned with 

geometric shapes, he encounters equations, one of which 

posits the seemingly straightforward assertion that P = 

NP. It was the same equation that became the main topic 

of a 2002 survey, where 61 mathematicians and computer 

scientists expressed skepticism about P equating to NP, 

while only nine believed in the equality [1]. Notably, 

some of those endorsing the equality admitted doing so 

merely for contrarian reasons. However, the question 

remains unanswered, making the equivalency of P and NP 

a pivotal inquiry in theoretical computer science—one of 

seven problems for which the Clay Mathematics Institute 

offers a million-dollar reward for proof or disproof. 

 

 
Fig. 1 Appearance of P = NP in The Simpsons: Season 

7, Episode 6 

 

     Fundamentally, computer science revolves around a 

core question: how long it takes to execute a given 

algorithm. This duration is not measured in minutes but 

rather in relation to the quantity of elements the algorithm 

manipulates. 

     Consider an algorithm seeking the largest number in 

an unsorted list. While it must inspect all numbers, its 

execution time, if it maintains a record of the largest 

number seen so far, is directly proportional to the number 

of elements, denoted as N. Although most algorithms are 

more intricate, many share execution times proportional 

to N² or N Log N. 

     The "P" in "P = NP" corresponds to polynomial 

expressions involving N's. While differences between 

algorithms with execution times proportional to N or N³ 

are substantial, they pale in comparison to distinctions 

involving exponential expressions, such as 2N. For 

instance, if an algorithm takes a second for a computation 

with 100 elements, an algorithm with a time complexity 

of 2N would require an astronomical 300 quintillion years. 

This discrepancy escalates dramatically with larger values 

of N. 

     NP (nondeterministic polynomial time) comprises 

problems with solutions verifiable in polynomial time. 

Despite this verifiability, solving many NP problems 

appears to demand exponential time. Notably, finding 

prime factors of a large number, a quintessential 

exponential-time problem, exemplifies this challenge, 

requiring systematic exploration of numerous candidates. 

 

C. NP-Hard 

     An NP-hard (Non-deterministic Polynomial-time 

hard) problem is a type of computational problem that is 

at least as hard as the hardest problems in NP (Non-

deterministic Polynomial-time). The class NP consists of 

problems for which a given solution can be checked 

quickly, but finding the solution efficiently is not 

necessarily guaranteed. An NP-hard problem doesn't need 

to have its solutions efficiently verifiable, but if you had 

a polynomial-time solution to an NP-hard problem, you 

could use it to solve any problem in NP in polynomial 

time. 

 

 
 

Fig. 2 Complexity of P-hardness in the realm of P ≠ NP 

 

Key characteristics of NP-hard problems: 

a) Difficulty of Solution 

NP-hard problems are considered computationally 

difficult, as finding an algorithm that provides an 

optimal solution in polynomial time is not known (or 

may not even exist). 

b) No Efficient Verification 

Unlike problems in NP, solutions to NP-hard 

problems are not necessarily quickly verifiable. If 

you propose a solution, it may take a long time to 

verify its correctness, but once a solution is given, it 

can be checked for correctness in polynomial time. 

c) Relation to NP 

If you could find a polynomial-time solution to any 

NP-hard problem, you could use that solution to 

efficiently solve any problem in NP. This is known 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 

 

as the Cook-Levin theorem, which establishes the 

concept of NP-completeness. 

d) Theoretical Foundation 

NP-hard problems are foundational to theoretical 

computer science and computational complexity 

theory. They help establish the limits of what can be 

efficiently computed. 

 

Examples of NP-hard problems include: 

 Traveling Salesman Problem (TSP) 

Given a list of cities and the distances between each 

pair of cities, the objective is to find the shortest 

possible route that visits each city exactly once and 

returns to the original city. 

 Knapsack Problem 

In the 0/1 Knapsack Problem, you are given a set of 

items, each with a weight and a value, and you need 

to determine the maximum value that can be 

obtained by selecting a subset of the items such that 

the total weight doesn't exceed a given limit. 

 Boolean Satisfiability Problem (SAT) 

Given a Boolean formula, the goal is to determine 

whether there exists an assignment of truth values 

to the variables that makes the entire formula true. 

 Graph Coloring Problem 

Given an undirected graph, the objective is to assign 

colors to the vertices in such a way that no two 

adjacent vertices have the same color, using as few 

colors as possible. 

.   

 

III.   ANALYSIS OF NP-HARD IN CRYPTOGRAPHY 

A. Merkle-Hellman 

     One of the earliest form in implementing a subset of an 

NP-Hard problem is the Merkle-Hellman Knapsack 

Cryptosystem, which as stated in the name implemented a 

knapsack sequence which theoretically would only be 

cracked in exponential time if it is non-superincreasing. 

 

Key Generation 

1. Choose a block size n. Integers up to n bits in length 

can be encrypted with this key. 

2. Choose a random superincreasing sequence of n 

positive integers 

 

 
 

Superincreasing refers to a sequence in which each 

element (wk) is larger than the sum of all the previous 

elements in the sequence. In mathematical terms, 

 

 
 

3. Choose a random integer q such that 

 
4. Choose a random integer r such that gcd(r,q) = 1. In 

other words, r and q must be coprime 

5. Calculate the sequence by multiplying each element in 

the sequence with r (mod q) 

 
6. The resulting sequence B will be set as the public key 

while W, q, r will be set as the private key. 

 

Encryption 

Let m be an n-bit message consisting of bits m1m2m3…mn, 

with m1 being the highest order bit. Select each bi for which 

mi is nonzero, then sum all of the product for each bi and 

mi. Therefore, cipher text c can be generated as following 

 

 
 

Decryption 

 

1. Calculate the modular inverse of r (mod q) using the 

Extended Euclidean Algorithm. 

 
2. Calculate c’ 

3. Solve the subset sum problem for c’ using the 

superincreasing sequence W’ with the greedy 

algorithm below 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

def 

subset_sum_greedy(superincreasing_sequence

, target_sum): 

 

# Initialize the list X to store indices of 

selected elements 

X = [] 

 

# Find the largest element in W which is 

less than or equal to the target sum 

# Find the largest element less than or 

equal to the target sum 

while target_sum > 0: 

     max_element =  

     max(filter(lambda x: x <= target_sum,  

     superincreasing_sequence)) 

 

# Subtract the selected element from the 

target sum 

target_sum -= max_element 

 

# Append the index of the selected element 

to the list X 

index = 

superincreasing_sequence.index(max_element

) 

 

X.append(index) 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 

 

 

 

 

 

 

 

 

 

 

4. Construct the message m with a 1 in each xi bit position 

and a 0 in all other bit positions 

 

 
Runtime Complexity 

     Merkle and Hellman originally suggested using knapsacks 

of approximate size n = 100. However, Schroeppel and Shamir 

developed an algorithm to solve knapsacks of this size. By 

trading time and space their method can solve the knapsack 

problem in time T = O(2n/2) and space O(2n/4) [5], which is 

recently improved by Jesper Nederlof and Karol Węgrzycki to 

O(2n/2) time and O(20.249999n) space randomized algorithm for 

solving worst-case Subset Sum instances with n integers [3]. 

For n = 100, T = 250 ≈ 1015. Thus a single processor can find a 

solution in 11,574 days (which is roughly 32 years) [5]. But 

for n = 200, assuming 8.64 x 1010 instructions per day, the 

challenge is intractable. 

     However, the system was finally shown to be insecure after 

Brickell invented a polynomial time algorithm which 

recreated simple knapsack vectors from hard and complex 

knapsack vectors. Using Brickell’s algorithm, it has been 

roughly calculated that the algorithm would require a runtime 

as explained by Ernest F. Brickell himself. [4] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Tests of the L3 Algorithm 

Type N Y R D m Time Con 

GS 40 4 14 82 18 27.6 
2.78E-

6 

MH 40 5 10 93 28 108.2 
4.80E-

6 

MH 40 5 20 113 30 210.6 
4.86E-

6 

MH 40 7 10 105 30 138.1 
3.98E-

6 

MH 40 10 10 123 32 250.1 
4.20E-

6 

MH 50 5 7 97 28 108.7 
4.25E-

6 

GS 50 5 16 96 24 92.3 
4.34E-

6 

MH 50 10 7 127 32 263.2 
4.02E-

6 

GS 64 5 64 158 37 653.7 
4.48E-

6 

GS 64 10 16 140 32 451.8 
5.15E-

6 

GS 100 5 16 151 30 295.5 
2.86E-

6 

GS 100 10 100 270 53 3542.0 
3.40E-

6 

GS 100 20 20 260 52 3355.3 
3.67E-

6 

 

table note [4] 

Type – Merkle-Hellman (MH) or Graham-Shamir (GS) 

     N – the number of weights 

      R – the random bits used in constructing the  

             superincreasing sequence. For MH knapsacks, all  

             random bits are the low order bits. For GS knapsacks,  

             half of the random bits are the low order bits, and the  

             other half are the high order bits 

      Y – the number of iterations 

      D – the number of bits in the final (public) weights 

      m – the number of weights used in the lattice reduction 

Time – the running time in seconds of the L3 algorithm 

  Con – Time/(mD3) 

 

Implication 

      As shown, using Brickell’s L3 algorithm has 

effectively solved the special case of the Subset Sum 

problem (in itself a subset of the Knapsack Problem) which 

the Merkle-Hellman cryptosystem is based on—although 

it should be noted that the general Subset Sum and 

Knapsack Problem is still intractable up to this day. This 

demonstrates that tackling a cryptosystem grounded in NP-

hard problems can be achieved by simplifying the 

algorithm to a problem with a lower level of P-hardness in 

complexity. Such strategic approach allows one to 

circumnavigate around the inherent intractability 

associated with the NP-hard foundation of the 

cryptosystem. 

 

“Breaking Iterated Knapsacks” 

Ernest F. Brickell 

page 355—357 

 

The worst case running time of the L3 algorithm is 

O(m6D3). In practice however, the running time appears 

to be (mD3). Also, we might have to make O(
𝑛

𝑛−𝑚
)3 

choices of an m-set of weights before we get a good one. 

To find the order of the weights, we must take O(n) 

determinants. Each determinant takes O(Y3) 

multiplications of integers with length D. So the running 

time for finding the order is O(nY3D2). The total running 

time on the first part of the algorithm is 

 

O(m (
𝑛

𝑛−𝑚
)3 D3) + O(nY3D2) 

 

The second part of the algorithm is solving for the ai’s 

after a cypher is received. The running time for this part 

is 

O(n2) + O(2ε/2) + O(Y2) 

# Return the list of selected indices 

return X 

 

# Example usage: 

W = [2, 7, 11, 21, 42, 89] 

target_sum = 57 

result = subset_sum_greedy(W, target_sum) 

print("Selected indices:", result) 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 

 

B. Naccache–Stern 

     The Naccache-Stern Cryptosystem is a public-key 

cryptosystem designed by David Naccache and Jacques 

Stern in 1997. It belongs to the class of asymmetric key 

algorithms, meaning it uses different keys for encryption 

and decryption. The Naccache-Stern Cryptosystem is 

known for its resistance against known attacks, particularly 

against certain types of quantum attacks. 

 

Encryption—Decryption 

[6] Let p be a large public prime and denoted by n the 

largest integer such that 

 

p >  ∏ 𝑝𝑖 , where 𝑝𝑖is the i − th prime, p0 = 2

𝑛

𝑖=0

 

 

The secret key s < p – 1 is a random integer such that gcd(p-

1, s) = 1 and the public keys are the n+1 roots generated 

with the Pohlig-Hellman 

 

𝑣𝑖 =  √𝑝𝑖
𝑠  mod p 

 

m =  ∑ 2𝑖𝑚𝑖

𝑛

𝑖=0

⋲ 𝑀 𝑖𝑠 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑎𝑠 𝑐 =  ∏ 𝑣𝑖
𝑚𝑖

𝑛

𝑖=0

𝑚𝑜𝑑 𝑝 

 

which is recovered by 

m =  ∑
2𝑖

𝑝𝑖 − 1

𝑛

𝑖=0

∗ (gcd(𝑝𝑖 , 𝑐𝑠 𝑚𝑜𝑑 𝑝) − 1)  

 

     The security foundation of the Naccache-Stern 

Cryptosystem lies in the challenge posed by the 

multiplicative knapsack problem associated with its 

trapdoor function, specifically given the product  

 

𝑐 =  ∏ 𝑣𝑖
𝑚𝑖

𝑛

𝑖=0

𝑚𝑜𝑑 𝑝 

 

     The task is to recover the individual mi's. Notably, this 

multiplicative knapsack problem differs from its additive 

counterparts, like the one employed in Merkle-Hellman 

cryptosystems, rendering conventional techniques such as 

Euclidean lattice reduction ineffective.  

     The primary generic attack involves tackling the 

discrete logarithm problem to deduce s from p, pi, vi, a 

challenge deemed formidable for classical computers. 

However, the advent of quantum algorithms, notably 

Shor's algorithm, efficiently solves the discrete logarithm 

problem, raising concerns in the face of quantum 

advancements. It's noteworthy that, as of 2023, there exists 

no conclusive proof establishing the reduction of the 

Naccache-Stern knapsack problem to the discrete 

logarithm problem. A specific attack identified in 2018 

exploits the birthday theorem, aiming to partially invert the 

function without prior knowledge of the trapdoor. This 

attack assumes a message with an exceptionally low 

Hamming weight, showcasing the ongoing efforts to 

scrutinize and fortify the cryptographic resilience of the 

Naccache-Stern Cryptosystem. 

 

Example 

n = 7 with prime p = 9700247 > 2 * 3 * 5 * 7 * 11 * 13 * 

17 * 19 and the secret s = 5642069 yield the v-list: 

v0 = √2
𝑠

 mod p = 8567078 v4 = √11
𝑠

 mod p = 8643477 

v1 = √3
𝑠

 mod p = 5509479 v5 = √13
𝑠

 mod p = 6404090 

v2 = √5
𝑠

 mod p = 2006538 v6 = √17
𝑠

 mod p = 1424105 

v3 = √7
𝑠

 mod p = 4340987 v7 = √19
𝑠

 mod p = 7671241 

encryption 

m = 202 = 110010102 

c =  𝑣7
1 ∗  𝑣6

1 ∗  𝑣5
0 ∗  𝑣4

0 ∗ 𝑣3
1  ∗ 𝑣2

0 ∗ 𝑣1
1 ∗ 𝑣0

0 mod p = 7202882 

 

decryption 

by exponentiation, we retrieve: 

𝑐𝑠mod p = 72028825642069 mod 9700247 = 6783 

whereby: 
6783 = 191 * 171 * 130 * 110 * 71 * 50 * 31 * 20  m = 110010102 

 

Shor’s Algorithm 

     Shor's algorithm, named after mathematician Peter 

Shor, is a quantum algorithm that efficiently factors large 

composite numbers into their prime factors and solves the 

discrete logarithm problem. Both of these problems are 

classically hard, meaning that no known polynomial-time 

algorithm exists for solving them on a classical computer. 

Shor's algorithm, however, demonstrates quantum 

superiority in addressing these problems exponentially 

faster than the best-known classical algorithms. 

     An implementation of Shor’s algorithm is as follows 

1) Choose any random number let say r, such that r < N 

so that they are co-primes of each other; 

2) A quantum computer is used to determine the 

unknown period p of the function fr, N (x) = rx mod N; 

3) If p is an odd integer, then go back to Step 1,  

else move to the next step; 

4) Since p is an even integer so, (rp/2 – 1) (rp/2 + 1) = rp – 

1 = 0 mod N; 

5) If the value of rp/2 + 1 = 0 mod N, go back to Step 1, 

else move to the next step; 

6) Compute d = gcd(rp/2 – 1, N). [8] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

from qiskit import IBMQ 
from qiskit.aqua import QuantumInstance 
from qiskit.aqua.algorithms import Shor 

  
# Enter your API token here 
IBMQ.enable_account('ENTER API TOKEN HERE')   
provider = IBMQ.get_provider(hub='ibm-q') 

  
# Specifies the quantum device 
backend = 
provider.get_backend('ibmq_qasm_simulator') 

  
print('\n Shors Algorithm') 
print('--------------------') 
print('\nExecuting...\n') 

  
# Function to run Shor's algorithm  
# where 35 is the integer to be factored 
factors = Shor(35) 
 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 

 

 

 

 

 

 

 

 

 

 

 

Runtime Complexity 

     Estimating the time complexity of Shor's algorithm 

involves considering several factors and referencing 

research findings. In the paper "Efficient Networks for 

Quantum Factoring" by David Beckman, Amalavoyal N. 

Chari, Srikrishna Devabhaktuni, and John Preskill, a 

notable estimation is provided, suggesting a time 

complexity of 72(log N)3 for quantum factoring[7], where 

N represents the number to be factored—resulting in O(log 

N) in Big-O terms. 

     However, it's crucial to acknowledge the complexities 

involved in comparing the number of steps on a quantum 

computer to those on a classical computer. The exact 

architecture of a quantum computer, which remains 

uncertain until its construction, significantly influences the 

number of steps required. Additionally, the comparison is 

complicated by the potential slower speed of individual 

steps on a quantum computer compared to classical 

counterparts. The challenge arises from maintaining 

quantum coherence, and until quantum computers are 

realized, the precise extent of this speed difference remains 

speculative. The time complexity of Shor's algorithm is 

intricately tied to the intricate interplay of quantum 

computation dynamics, emphasizing the need for empirical 

quantum computing developments to draw definitive 

conclusions. 

 

Implication 

     Shor's algorithm stands as a groundbreaking milestone 

in the realm of quantum computing, showcasing the 

immense potential of quantum computers to address 

problems that are conventionally considered intractable for 

classical computers. Specifically, Shor's algorithm 

efficiently tackles challenges such as factoring large 

composite numbers and solving the discrete logarithm 

problem, both of which are integral to the foundation of 

various cryptographic systems. The significance of Shor's 

algorithm extends to the realm of public-key cryptography, 

where the security of widely used protocols, including 

RSA, relies on the presumed computational difficulty of 

factoring large numbers. 

     The quantum supremacy demonstrated by Shor's 

algorithm has profound implications for the security 

landscape of cryptographic systems based on NP-hard 

problems. NP-hard problems, which include various 

computational challenges fundamental to cryptographic 

protocols, are traditionally considered computationally 

infeasible to solve efficiently. However, Shor's algorithm 

challenges this assumption by illustrating the potential of 

quantum computers to significantly reduce the time 

complexity of certain problems that form the basis of 

cryptographic hardness. 

 

 

V.   CONCLUSION 

     Leveraging NP-Hard cryptography represents a valid 

strategy for securing a cryptosystem, utilizing the inherent 

intractability of problems categorized with a P-hardness 

complexity of NP-hard. However, an insightful examination of 

two prominent NP-Hard cryptosystems, namely Merkle-

Hellman and Naccache-Stern, reveals vulnerabilities susceptible 

to certain algorithms which could circumnavigate the 

intractability of the problem itself and potentially quantum 

computers. These vulnerabilities could unveil weaknesses in 

problems traditionally perceived as intractable. Consequently, 

prudence dictates against an exclusive reliance on NP-hardness 

as la garde ultime in the pursuit of crafting an impeccable 

cryptosystem. 

 

VI.   APPENDIX 

     The applicative research presented in this paper owes a debt 

of gratitude to Mr. Ernest F. Brickle, the visionary mind behind 

the L3 algorithm, and Mr. Peter Shor, the brilliant architect of 

Shor's Algorithm. Their groundbreaking contributions and 

innovative algorithms have been pivotal in shaping the 

trajectory of this study. Without their seminal work, the insights 

and discoveries encapsulated in this paper would not have come 

to fruition. 

     Furthermore, it is imperative to extend special 

acknowledgment to all the distinguished researchers who have 

been trailblazers in the field of P vs NP. Their pioneering efforts, 

relentless dedication, and significant contributions have laid the 

foundation for the theoretical framework and computational 

paradigms explored in this research. The intellectual legacy they 

have established serves as a beacon, guiding subsequent 

generations of researchers, and their collective impact on the 

field is immeasurable. It is with deep appreciation and 

admiration that their names are invoked, recognizing the debt 

owed to these esteemed pioneers in the pursuit of unraveling the 

complexities of computational theory. 

VII.   ACKNOWLEDGMENT 

I am profoundly grateful to God Almighty, creator of the 

universe, for His guidance throughout the journey of crafting 

this paper. I would also like to express my sincere gratitude all 

the following individuals who have played pivotal roles in the 

completion of this paper: 

1. Fariska Zakhralativa Ruskanda, S.T., M.T., my 

esteemed class professor, whose guidance and 

expertise provided invaluable insights throughout the 

course, elevating the quality of this work. 

2. Dr. Ir. Rinaldi Munir, M.T., my dedicated course 

coordinator, whose research and syllabus have been 

instrumental in shaping the trajectory of this research 

endeavor. 

3. My esteemed colleagues of IF'22, whose collaborative 

spirit and shared enthusiasm fostered an enriching 

result_dict = 
factors.run(QuantumInstance(backend, 

shots=1, skip_qobj_validation=False)) 

  
# Get factors from results 
result = result_dict['factors']  

  
print(result) 
print('\nPress any key to close') 
input() 

 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 

 

academic environment, stimulating meaningful 

discussions and enhancing the overall research 

experience. 

4. Last but not least, my heartfelt appreciation goes to my 

parents for their enduring support, encouragement, and 

understanding. Their unwavering belief in my 

academic pursuits has been a constant source of 

inspiration, and I am truly grateful for their love and 

encouragement throughout this academic journey. 

REFERENCES 

[1] https://news.mit.edu/2009/explainer-pnp, accessed on December 10th 
2023. 

[2] https://crypto.stackexchange.com/questions/58688/information-theoretic-

security, accessed on December 10th 2023. 
[3] Jesper Nederlof, Karol Węgrzycki, Improving Schroeppel and Shamir’s 

Algorithm for Subset Sum via Orthogonal Vectors. Cornell University, 2021, 

arXiv:2010.08576 [cs.DS]. 
[4] Ernest F. Brickell, Breaking Iterated Knapsacks. Sandia National 

Laboratories, Albuquerque, New Mexico, 1984, pp. 342—358. Accessed 

through https://link.springer.com/content/pdf/10.1007/3-540-39568-7_27.pdf 

on December 10th, 2023. 

[5] Jennifer Seberry, Public Key Cryptography. University of New South 

Wales, Canberra, 1987, 1—17. Accessed through 
https://ro.uow.edu.au/cgi/viewcontent.cgi?referer=&httpsredir=1&article=2045

&context=infopapers on December 10th, 2023. 

[6] David Naccache, Jacques Stern, A New Public-Key Cryptosystem. France, 
1998. Accessed through https://www.di.ens.fr/~stern/data/St63.pdf on 

December 11th, 2023. 

[7] David Beckman, Amalavoyal N. Chari, Srikrishna Devabhaktuni, and 
John Preskill, Efficient Networks for Quantum Factoring. American Physical 

Society, 1996, https://doi.org/10.1103/PhysRevA.54.1034. 

[8] https://www.geeksforgeeks.org/shors-factorization-algorithm/, accessed 
on December 11th, 2023. 

 

 

STATEMENT OF ORIGINALITY 

I hereby declare that this paper is an original composition of 

my own, not of any adaptation or translation from the authored 

works of others, and free from plagiarism. 

 

Bandung, December 11th 2023    

 

 
 

Ellijah Darrellshane Suryanegara 

13522097 

https://news.mit.edu/2009/explainer-pnp
https://crypto.stackexchange.com/questions/58688/information-theoretic-security
https://crypto.stackexchange.com/questions/58688/information-theoretic-security
https://arxiv.org/abs/2010.08576
https://link.springer.com/content/pdf/10.1007/3-540-39568-7_27.pdf
https://ro.uow.edu.au/cgi/viewcontent.cgi?referer=&httpsredir=1&article=2045&context=infopapers
https://ro.uow.edu.au/cgi/viewcontent.cgi?referer=&httpsredir=1&article=2045&context=infopapers
https://www.di.ens.fr/~stern/data/St63.pdf
https://doi.org/10.1103/PhysRevA.54.1034
https://www.geeksforgeeks.org/shors-factorization-algorithm/

